171 research outputs found

    Extending small arcs to large arcs

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in European Journal of Mathematics. The final authenticated version is available online at: https://doi.org/10.1007/s40879-017-0193-xAn arc is a set of vectors of the k-dimensional vector space over the finite field with q elements Fq , in which every subset of size k is a basis of the space, i.e. every k-subset is a set of linearly independent vectors. Given an arc G in a space of odd characteristic, we prove that there is an upper bound on the largest arc containing G. The bound is not an explicit bound but is obtained by computing properties of a matrix constructed from G. In some cases we can also determine the largest arc containing G, or at least determine the hyperplanes which contain exactly k-2 vectors of the large arc. The theorems contained in this article may provide new tools in the computational classification and construction of large arcs.Postprint (author's final draft

    On sets of points with few odd secants

    Get PDF
    We prove that, for qq odd, a set of q+2q+2 points in the projective plane over the field with qq elements has at least 2qc2q-c odd secants, where cc is a constant and an odd secant is a line incident with an odd number of points of the set.Comment: Revised versio

    On varieties defined by large sets of quadrics and their application to error-correcting codes

    Get PDF
    Let UU be a ((k12)1)({ k-1 \choose 2}-1)-dimensional subspace of quadratic forms defined on PG(k1,F)\mathrm{PG}(k-1,{\mathbb F}) with the property that UU does not contain any reducible quadratic form. Let V(U)V(U) be the points of PG(k1,F)\mathrm{PG}(k-1,{\mathbb F}) which are zeros of all quadratic forms in UU. We will prove that if there is a group GG which fixes UU and no line of PG(k1,F)\mathrm{PG}(k-1,{\mathbb F}) and V(U)V(U) spans PG(k1,F)\mathrm{PG}(k-1,{\mathbb F}) then any hyperplane of PG(k1,F)\mathrm{PG}(k-1,{\mathbb F}) is incident with at most kk points of V(U)V(U). If F{\mathbb F} is a finite field then the linear code generated by the matrix whose columns are the points of V(U)V(U) is a kk-dimensional linear code of length V(U)|V(U)| and minimum distance at least V(U)k|V(U)|-k. A linear code with these parameters is an MDS code or an almost MDS code. We will construct examples of such subspaces UU and groups GG, which include the normal rational curve, the elliptic curve, Glynn's arc from \cite{Glynn1986} and other examples found by computer search. We conjecture that the projection of V(U)V(U) from any k4k-4 points is contained in the intersection of two quadrics, the common zeros of two linearly independent quadratic forms. This would be a strengthening of a classical theorem of Fano, which itself is an extension of a theorem of Castelnuovo, for which we include a proof using only linear algebra

    A finite version of the Kakeya problem

    Get PDF
    Let LL be a set of lines of an affine space over a field and let SS be a set of points with the property that every line of LL is incident with at least NN points of SS. Let DD be the set of directions of the lines of LL considered as points of the projective space at infinity. We give a geometric construction of a set of lines LL, where DD contains an Nn1N^{n-1} grid and where SS has size 2((1/2)N)n2((1/2)N)^n, given a starting configuration in the plane. We provide examples of such starting configurations for the reals and for finite fields. Following Dvir's proof of the finite field Kakeya conjecture and the idea of using multiplicities of Dvir, Kopparty, Saraf and Sudan, we prove a lower bound on the size of SS dependent on the ideal generated by the homogeneous polynomials vanishing on DD. This bound is maximised as ((1/2)N)n((1/2)N)^n plus smaller order terms, for n4n\geqslant 4, when DD contains the points of a Nn1N^{n-1} grid.Comment: A few minor changes to previous versio

    Some constructions of quantum MDS codes

    Get PDF
    We construct quantum MDS codes with parameters [ ⁣[q2+1,q2+32d,d] ⁣]q [\![ q^2+1,q^2+3-2d,d ]\!] _q for all dq+1d \leqslant q+1, dqd \neq q. These codes are shown to exist by proving that there are classical generalised Reed-Solomon codes which contain their Hermitian dual. These constructions include many constructions which were previously known but in some cases these codes are new. We go on to prove that if dq+2d\geqslant q+2 then there is no generalised Reed-Solomon [n,nd+1,d]q2[n,n-d+1,d]_{q^2} code which contains its Hermitian dual. We also construct an [ ⁣[18,0,10] ⁣]5 [\![ 18,0,10 ]\!] _5 quantum MDS code, an [ ⁣[18,0,10] ⁣]7 [\![ 18,0,10 ]\!] _7 quantum MDS code and a [ ⁣[14,0,8] ⁣]5 [\![ 14,0,8 ]\!] _5 quantum MDS code, which are the first quantum MDS codes discovered for which dq+3d \geqslant q+3, apart from the [ ⁣[10,0,6] ⁣]3 [\![ 10,0,6 ]\!] _3 quantum MDS code derived from Glynn's code

    On sets defining few ordinary planes

    Get PDF
    Let S be a set of n points in real three-dimensional space, no three collinear and not all co-planar. We prove that if the number of planes incident with exactly three points of S is less than (Formula presented.) for some (Formula presented.) then, for n sufficiently large, all but at most O(K) points of S are contained in the intersection of two quadrics. Furthermore, we prove that there is a constant c such that if the number of planes incident with exactly three points of S is less than (Formula presented.) then, for n sufficiently large, S is either a regular prism, a regular anti-prism, a regular prism with a point removed or a regular anti-prism with a point removed. As a corollary to the main result, we deduce the following theorem. Let S be a set of n points in the real plane. If the number of circles incident with exactly three points of S is less than (Formula presented.) for some (Formula presented.) then, for n sufficiently large, all but at most O(K) points of S are contained in a curve of degree at most four.Postprint (updated version

    Grassl–Rötteler cyclic and consta-cyclic MDS codes are generalised Reed–Solomon codes

    Get PDF
    We prove that the cyclic and constacyclic codes constructed by Grassl and Rötteler in International Symposium on Information Theory (ISIT), pp. 1104–1108 (2015) are generalised Reed–Solomon codes. This note can be considered as an addendum to Grassl and Rötteler International Symposium on Information Theory (ISIT), pp 1104–1108 (2015). It can also be considered as an appendix to Ball and Vilar IEEE Trans Inform Theory 68:3796–3805, (2022) where Conjecture 11 of International Symposium on Information Theory (ISIT), pp 1104–1108 (2015), which was stated for Grassl–Rötteler codes, is proven for generalised Reed–Solomon codes. The content of this note, together with IEEE Trans Inform Theory 68:3796–3805, (2022) therefore implies that Conjecture 11 from International Symposium on Information Theory (ISIT), pp. 1104–1108 (2015) is true.Peer ReviewedPostprint (author's final draft

    Some constructions of quantum MDS codes

    Get PDF
    ​The version of record os available online at: http://dx.doi.org/10.1007/s10623-021-00846-yWe construct quantum MDS codes with parameters [[q2+1,q2+3-2d,d]]q for all d¿q+1, d¿q. These codes are shown to exist by proving that there are classical generalised Reed–Solomon codes which contain their Hermitian dual. These constructions include many constructions which were previously known but in some cases these codes are new. We go on to prove that if d¿q+2 then there is no generalised Reed–Solomon [n,n-d+1,d]q2 code which contains its Hermitian dual. We also construct an [[18,0,10]]5 quantum MDS code, an [[18,0,10]]7 quantum MDS code and a [[14,0,8]]5 quantum MDS code, which are the first quantum MDS codes discovered for which d¿q+3, apart from the [[10,0,6]]3 quantum MDS code derived from Glynn’s code.Postprint (author's final draft

    On Segre's Lemma of Tangents

    Get PDF
    Segre's lemma of tangents dates back to the 1950's when he used it in the proof of his "arc is a conic" theorem. Since then it has been used as a tool to prove results about various objects including internal nuclei, Kakeya sets, sets with few odd secants and further results on arcs. Here, we survey some of these results and report on how re-formulations of Segre's lemma of tangents are leading to new results
    corecore